Cyclic AMP Mediates a Presynaptic Form of LTP at Cerebellar Parallel Fiber Synapses
نویسندگان
چکیده
The N-methyl-D-aspartate receptor-independent form of long-term potentiation (LTP) at hippocampal mossy fiber synapses requires presynaptic Ca(2+)-dependent activation of adenylyl cyclase. To determine whether this form of LTP might occur at other synapses, we examined cerebellar parallel fibers that, like hippocampal mossy fiber synapses, express high levels of the Ca2+/calmodulin-sensitive adenylyl cyclase I. Repetitive stimulation of parallel fibers caused a long-lasting increase in synaptic strength that was associated with a decrease in paired-pulse facilitation. Blockade of glutamate receptors did not prevent LTP induction, nor did loading of Purkinje cells with a Ca2+ chelator. LTP was occluded by forskolin-induced potentiation and blocked by the protein kinase A inhibitor Rp-8-CPT-cAMPS. These findings suggest that parallel fiber synapses express a form of LTP that is dependent on the activation of a presynaptic adenylyl cyclase and is indistinguishable from LTP at hippocampal mossy fiber synapses.
منابع مشابه
Phosphorylation of RIM1α by PKA Triggers Presynaptic Long-Term Potentiation at Cerebellar Parallel Fiber Synapses
Presynaptic activation of protein kinase A (PKA) induces LTP in cerebellar parallel fiber synapses. Presynaptic LTP is known to require the active zone protein RIM1alpha, but the underlying induction mechanism remains unclear. We now show that PKA directly phosphorylates RIM1alpha at two sites. Using paired recordings from cultured cerebellar granule and Purkinje neurons, we demonstrate that LT...
متن کاملGenetic evidence for a protein-kinase-A-mediated presynaptic component in NMDA-receptor-dependent forms of long-term synaptic potentiation.
The synaptic vesicle protein Rab3A is a small GTP-binding protein that interacts with rabphilin and RIM1alpha, two presynaptic substrates of protein kinase A (PKA). Mice lacking RIM1alpha and Rab3A have a defect in PKA-dependent and NMDA receptor (NMDAR)-independent presynaptic long-term potentiation (LTP) at hippocampal mossy-fiber and cerebellar parallel-fiber synapses. In contrast, the NMDAR...
متن کاملA new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP.
Long-term depression (LTD) at cerebellar parallel fiber (PF)-Purkinje cell synapses must be balanced by long-term potentiation (LTP) to prevent saturation and allow reversal of motor learning. The only previously analyzed form of cerebellar LTP is induced by 4-8 Hz PF stimulation and requires cAMP but not nitric oxide. It is a poor candidate to reverse LTD because it is presynaptically expresse...
متن کاملReversing cerebellar long-term depression.
The discovery of a postsynaptically expressed form of cerebellar parallel fiber-Purkinje cell long-term potentiation (LTP) raises the question whether this is the long-sought resetting mechanism for long-term depression (LTD). Extracellular monitoring of PC spikes enables stable prolonged recordings of parallel fiber-Purkinje cell synaptic efficacy. LTD, saturated by repeated induction protocol...
متن کاملLocalization of Presynaptic Plasticity Mechanisms Enables Functional Independence of Synaptic and Ectopic Transmission in the Cerebellum
In the cerebellar molecular layer parallel fibre terminals release glutamate from both the active zone and from extrasynaptic "ectopic" sites. Ectopic release mediates transmission to the Bergmann glia that ensheathe the synapse, activating Ca(2+)-permeable AMPA receptors and glutamate transporters. Parallel fibre terminals exhibit several forms of presynaptic plasticity, including cAMP-depende...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 16 شماره
صفحات -
تاریخ انتشار 1996